Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We develop a Schwinger-Keldysh effective field theory describing the hydrodynamics of a fluid with conserved charge and dipole moments, together with conserved momentum. The resulting hydrodynamic modes are highly unusual, including sound waves with quadratic (magnon-like) dispersion relation and subdiffusive decay rate. Hydrodynamics itself is unstable below four spatial dimensions. We show that the momentum density is, at leading order, the Goldstone boson for a dipole symmetry which appears spontaneously broken at finite charge density. Unlike an ordinary fluid, the presence or absence of energy conservation qualitatively changes the decay rates of the hydrodynamic modes. This effective field theory naturally couples to curved spacetime and background gauge fields; in the flat spacetime limit, we reproduce the “mixed rank tensor fields” previously coupled to fracton matter.more » « less
-
A bstract We develop a hydrodynamic effective field theory on the Schwinger-Keldysh contour for fluids with charge, energy, and momentum conservation, but only discrete rotational symmetry. The consequences of anisotropy on thermodynamics and first-order dissipative hydrodynamics are detailed in some simple examples in two spatial dimensions, but our construction extends to any spatial dimension and any rotation group (discrete or continuous). We find many possible terms in the equations of motion which are compatible with the existence of an entropy current, but not with the ability to couple the fluid to background gauge fields and vielbein.more » « less
An official website of the United States government
